A Probabilistic Framework for Graph Clustering

نویسندگان

  • Bin Luo
  • Antonio Robles-Kelly
  • Andrea Torsello
  • Richard C. Wilson
  • Edwin R. Hancock
چکیده

This paper describes a probabilistic framework for graph-clustering. We commence from a set of pairwise distances between graph-structures. From this set of distances, we use a mixture model to characterize the pairwise affinity of the different graphs. We present an EM-like algorithm for clustering the graphs by iteratively updating the elements of the affinity matrix. In the M-step we applying eigendcomposition to the affinity matrix to locate the principal clusters. In the M-step we update the affinity probabilities. We apply the resulting unsupervised clustering algorithm to two practical problems. The first of these involves locating shapecategories using shock trees extracted from 2D silhouettes. The second problem involves finding the view structure of a polyhedral object using the Delaunay triangulation of corner features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

A Unified Framework for Model-based Clustering

Model-based clustering techniques have been widely used and have shown promising results in many applications involving complex data. This paper presents a unified framework for probabilistic model-based clustering based on a bipartite graph view of data and models that highlights the commonalities and differences among existing model-based clustering algorithms. In this view, clusters are repr...

متن کامل

Probabilistic Models in Cluster Analysis

This paper discusses cluster analysis in a probabilistic and inferential framework as opposed to more exploratory, heuristic or algorithmic approaches. It presents a broad survey on probabilistic models for partitiontype, hierarchical and tree-like clustering structures and points to the relevant literature. It is shown how suitable clustering criteria or grouping methods may be derived from th...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

A COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES

We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...

متن کامل

Application of Probabilistic Clustering Algorithms to Determine Mineralization Areas in Regional-Scale Exploration Studies

In this work, we aim to identify the mineralization areas for the next exploration phases. Thus, the probabilistic clustering algorithms due to the use of appropriate measures, the possibility of working with datasets with missing values, and the lack of trapping in local optimal are used to determine the multi-element geochemical anomalies. Four probabilistic clustering algorithms, namely PHC,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001